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Ex 5.0 (A non-trivial result from linear algebra [optional]) Let X be a vector space and
fis---s fu, [ X = R be linear functionals. Show that the following properties are equivalent :
a) there exist Aj,..., A\, € Rsuch that f =" A\ f;.

b) [ Ker(f;) C Ker(f).

i=1
Hint: For the nontrivial implication consider the mapping ®((fi(x),..., fo(x))) := f(x). Show that
it is well-defined on (f1,..., fn)(X) C R™ and extend it.

Solution 5.0 : The implication a) == b) is trivial. Therefore assume that b) holds true.
Define G : X — R" by G(z) = Y_", fi(z)e;. Then G is linear. Note that due to b) the condition
G(z1) = G(xg) implies that f(z1) = f(x2). Hence the map ®(G(z)) := f(z) is a well-defined
linear map on G(X) C R™. Extend it to a linear map ®' : R” — R (which requires no advanced
result since R™ is finite-dimensional). Then for all z € X,

f() = (G(x)) = :E:tﬁ(iﬁqy(ei%

so the claim follows with the choice A\; = ®'(¢;).

Ex 5.1 (On the weak*-topology on a TVS)
Let X be a TVS with dual space X’ and denote the weak*-topology on X’ by 7’ (cf. Definition
1.32).
a) Show that (X', 7’) is a locally convex topological vector space.
b) Show that a sequence (2, ),en converges to 2’ in (X', 7') if and only if /,(x) — 2/(z) for
all z € X.
c)* Let X be a locally convex topological vector space. Show that (X’,7’) is metrizable if
and only if X has a countable algebraic base.
Hint: Recall Theorem 1.17 and use Exercise 5.0 for certain functionals on X’.

Solution 5.1 : a) Define the following seminorms on X’ : for any x € X we set p, : X' —
[0,400) as py(z') = |2'(x)|, which clearly is a seminorm. Note that when p,(z’) = 0 for all
x € X, then 2/(z) = 0 for all # € X, which implies 2 = 0. Hence the topology 7, induced
by the seminorms (p,).ex turns X’ into a locally convex topological vector space. We show
that 7/ = 7, which implies the statement in a). Fix U € 7,. Then for every 2’ € U there exist
x1,...,%, € X such that

U5 (Vpaly' =) < 2} = Iy (@) = /()] < 2} = ¥/ () € B’ (@)}



By definition of the weak*-topology the latter set is open in 7/, hence U € 7/. To prove the
converse inclusion, it is sufficient to show that linear maps ¢, : 2’ +— 2/(x) are continuous
with respect to 7, for every z € X (since by definition 7’ is the coarsest topology with respect
to which all these maps are continuous). It is sufficient to prove continuity at 0 so consider
B.(0) C R. We have

67 (B.(0) = {2’ € X' : /()] < e} = {' € X : p,(a) < &},

T

which is an open set in 7,. Thus 7/ C 7, and we are done.

b) Let (2),)nen € X’ be a sequence such that z), — 2’ in the weak*-topology. Since continuity
always implies sequential continuity, we get that Oz (x)) = ¢ (2') for all x € X ie. 2/ (v) —
' (x).

Conversely, assume that z/ (z) — 2/(z) for all z € X. In particular, for any zi,...,z, € X it
holds that max;<;<k |2}, (z;) — 2/(x;)] — 0 as n — +o00. By the definition of the topology 7,
defined in a) and the fact that 7" = 7, we conclude that 2/, — 2" in (X', 7).

c¢) Assume that 7’ is metrizable. By Theorem 1.17 and the solution of a), there exists (x,,),en C
X such that the seminorms (ps, )nen generate the topology 7. Set Xy = span({z,, : n € N}) C
X. We claim that X, = X. Fix x € X. Then the set {2/ € X' : |2/(z)| < 1} contains a set of
the form {2’ € X' : p,,(2') < 0 for all i = 1, ..., k}. In other words,

mas [¢/(z)] < 6 = [¢/(x)| < 1

or by scaling,

1n<1?<>§g|x ()] <A = [2/(x)] < A\

We want to use Exercise 5.0. If |2/(x;)| = 0 for all 4, then the above implication implies that
|2/ (z)| < A for all A > 0, so 2/(z) = 0. Thus (}_, Ker(¢,,) C Ker(¢,). From Exercise 5.0 we
deduce that there exist Aq,..., A\x € K such that

k
=D N,
i=1

i.e., for all ' € X’ it holds

k k k
= Z Nt (x;) = o (Z /\i%) — (x — Z /\ixi) =0
i=1 i=1 i—1

By Corollary 1.31, we deduce x = Zle Aix; since X is a LCTVS. Thus every element of X is
a finite linear combination of elements of {x;};cn, and we can inductively reduce this sequence
to a linearly independent sequence by throwing out any x;, which are in the linear span of the
preceeding x4, ..., xx_1 to obtain an algebraic basis.

To prove the reverse direction, let (x,,),en be an algebraic base for  and consider the seminorms
(Px, Jnen. We show that these seminorms generate the weak*-topology. By a) it suffices to show
that for every z € X there exist x4,...,2; and a constant ¢ > 0 such that p, < cmaxi<i<j pa,.
To this end write x = Zle \;z; with \; € R and & € N. Then

k
/
P () |<ZA|$$Z|<<Z )fgaépx x').
%,_/



Ex 5.2 (On continuity of differentiation and multiplication in C*°(Q2) and D)
Let Q C R? be open and K C R? be compact. Show that

a) for any o € N¢, the mapping D®: ¢ — D%p is a continuous linear operator in both
C*(Q) and Dk ;

b) for any f € C*(R?), the mapping M;: » — f¢ is a continuous linear operator in both
C>(Q) and Dk.

Solution 5.2 :
a) Clearly D* and My are linear operators from C>(2) to itself. Since, supp(D*¢) C supp(p)
and supp(fy) C supp(p), the same is true for D.

As for the continuity in C'*°(£2), let us fix a family of appropriate compact sets (K, )nen and
let N € N. We have

pn(D%p) = max{|D’D*p(z)| : |B| < N,z € Ky}
<max{|D7p(x)| : |v| < N+ a|,v € Kyyjo)} = PN+ (0)-

This shows the continuity of D®. By the Leibniz rule, we have also

pr(fp) = max{[D*(fe)(z)| : o] < N,z € Ky}

< max { 3 leasD? f(@)D*Pp(a)| : |al < Nz € Ky}

B<a
< Cnpn(fla) pn(e)

for a suitably large constant C'y. This shows the continuity of M.

The corresponding result for D is immediate once we substitute Ky with K in the preceding
estimates. Alternatively we can use the following general result from topology : Let (X, 7) be a
topological space, Y C X and f: X — X. If f is continuous with respect to 7 and f(Y) C Y,
then fly : Y — Y is continuous with respect to the relative topology Ty .

Ex 5.3 (An incomplete locally convex topology on test functions*)
Let © C R be open and consider the set of test functions D(€2) equipped with the family of
norms

|lolln = max{|D%(x)| : |a| <n, z€Q}, neN. (%)

a) Assume that Q = R. Pick ¢ € D(Q2) with supp(¢) = [0,1] and ¢ > 0 on (0,1). Define

m

Unlr) = 3 Tl — ).

i=1

Show that (¢,,)m is a Cauchy sequence in D(R), but the pointwise limit ¢o, = lim v,
does not have compact support, hence it is not in D(R).

b) Show that for any open set Q C R?, the space D(€2) with the suggested topology is not
complete.
Hint: For Q # R?, consider disjoint balls accumulating at the boundary and construct a sequence
of functions appropriately modifying the example in item a).

Ex 5.4 (Heine—Borel and normability)
Recall that a TVS X has the Heine-Borel property if every bounded and closed subset of X is
compact.



a) Prove that every normed vector space (X, ||-||) that has the Heine-Borel property is finite
dimensional.
Hint: Recall Exercise 4.4.

b) Deduce that if K C R?is compact with non-empty interior, the space D is not normable.

Solution 5.4 :
a) Let X be an infinite dimensional normed vector space. Since any normed space is Hausdorff,
we can use Exercise 4.4 to see that no neighborhood of the origin in X is compact. Then

By(0) :=={z € X : ||z|| < 1} is clearly closed and bounded, but as it is also a neighborhood of
the origin it cannot be compact. Thus X does not have the Heine-Borel property.

b) Since D is infinite-dimensional (check that), to deduce that it is not normable it suffices
to show that it has the Heine-Borel property. C*°(Q2) has the Heine-Borel property by Pro-
position 2.5; since Dy is a closed subset of C'*°(Q2), it also inherits this property (for a direct
proof, see Exercise 3.4 c)).



