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Ex 5.0 (A non-trivial result from linear algebra [optional]) Let X be a vector space and
f1, . . . , fn, f : X → R be linear functionals. Show that the following properties are equivalent :

a) there exist λ1, . . . , λn ∈ R such that f =
∑n

i=1 λifi.

b)
n⋂

i=1

Ker(fi) ⊂ Ker(f).

Hint: For the nontrivial implication consider the mapping Φ((f1(x), . . . , fn(x))) := f(x). Show that

it is well-defined on (f1, . . . , fn)(X) ⊂ Rn and extend it.

Solution 5.0 : The implication a) =⇒ b) is trivial. Therefore assume that b) holds true.
Define G : X → Rn by G(x) =

∑n
i=1 fi(x)ei. Then G is linear. Note that due to b) the condition

G(x1) = G(x2) implies that f(x1) = f(x2). Hence the map Φ(G(x)) := f(x) is a well-defined
linear map on G(X) ⊂ Rn. Extend it to a linear map Φ′ : Rn → R (which requires no advanced
result since Rn is finite-dimensional). Then for all x ∈ X,

f(x) = Φ′(G(x)) =
n∑

i=1

fi(x)Φ
′(ei),

so the claim follows with the choice λi = Φ′(ei).

Ex 5.1 (On the weak∗-topology on a TVS)
Let X be a TVS with dual space X ′ and denote the weak∗-topology on X ′ by τ ′ (cf. Definition
1.32).

a) Show that (X ′, τ ′) is a locally convex topological vector space.
b) Show that a sequence (x′n)n∈N converges to x′ in (X ′, τ ′) if and only if x′n(x) → x′(x) for

all x ∈ X.
c)∗ Let X be a locally convex topological vector space. Show that (X ′, τ ′) is metrizable if

and only if X has a countable algebraic base.
Hint: Recall Theorem 1.17 and use Exercise 5.0 for certain functionals on X ′.

Solution 5.1 : a) Define the following seminorms on X ′ : for any x ∈ X we set px : X ′ →
[0,+∞) as px(x

′) = |x′(x)|, which clearly is a seminorm. Note that when px(x
′) = 0 for all

x ∈ X, then x′(x) = 0 for all x ∈ X, which implies x′ = 0. Hence the topology τp induced
by the seminorms (px)x∈X turns X ′ into a locally convex topological vector space. We show
that τ ′ = τp, which implies the statement in a). Fix U ∈ τp. Then for every x′ ∈ U there exist
x1, . . . , xn ∈ X such that

U ⊃
n⋂

i=1

{pxi
(y′ − x′) < ε} =

n⋂
i=1

{|y′(xi)− x′(xi)| < ε} =
n⋂

i=1

{y′(xi) ∈ Bε(x
′(xi))}.



By definition of the weak∗-topology the latter set is open in τ ′, hence U ∈ τ ′. To prove the
converse inclusion, it is sufficient to show that linear maps ϕx : x′ 7→ x′(x) are continuous
with respect to τp for every x ∈ X (since by definition τ ′ is the coarsest topology with respect
to which all these maps are continuous). It is sufficient to prove continuity at 0 so consider
Bε(0) ⊂ R. We have

ϕ−1
x (Bε(0)) = {x′ ∈ X ′ : |x′(x)| < ε} = {x′ ∈ X ′ : px(x

′) < ε},

which is an open set in τp. Thus τ
′ ⊂ τp and we are done.

b) Let (x′n)n∈N ⊂ X ′ be a sequence such that x′n → x′ in the weak∗-topology. Since continuity
always implies sequential continuity, we get that ϕx(x

′
n) → ϕx(x

′) for all x ∈ X, i.e. x′n(x) →
x′(x).

Conversely, assume that x′n(x) → x′(x) for all x ∈ X. In particular, for any x1, . . . , xk ∈ X it
holds that max1≤i≤k |x′n(xi) − x′(xi)| → 0 as n → +∞. By the definition of the topology τp
defined in a) and the fact that τ ′ = τp we conclude that x′n → x′ in (X ′, τ ′).

c) Assume that τ ′ is metrizable. By Theorem 1.17 and the solution of a), there exists (xn)n∈N ⊂
X such that the seminorms (pxn)n∈N generate the topology τ ′. Set X0 = span({xn : n ∈ N}) ⊂
X. We claim that X0 = X. Fix x ∈ X. Then the set {x′ ∈ X ′ : |x′(x)| < 1} contains a set of
the form {x′ ∈ X ′ : pxi

(x′) < δ for all i = 1, ..., k}. In other words,

max
1≤i≤k

|x′(xi)| < δ =⇒ |x′(x)| < 1

or by scaling,
max
1≤i≤k

|x′(xi)| < λδ =⇒ |x′(x)| < λ.

We want to use Exercise 5.0. If |x′(xi)| = 0 for all i, then the above implication implies that
|x′(x)| < λ for all λ > 0, so x′(x) = 0. Thus

⋂k
i=1Ker(ϕxi

) ⊂ Ker(ϕx). From Exercise 5.0 we
deduce that there exist λ1, . . . , λk ∈ K such that

ϕx =
k∑

i=1

λiϕxi

i.e., for all x′ ∈ X ′ it holds

x′(x) =
k∑

i=1

λix
′(xi) = x′

(
k∑

i=1

λixi

)
=⇒ x′

(
x−

k∑
i=1

λixi

)
= 0

By Corollary 1.31, we deduce x =
∑k

i=1 λixi since X is a LCTVS. Thus every element of X is
a finite linear combination of elements of {xi}i∈N, and we can inductively reduce this sequence
to a linearly independent sequence by throwing out any xk which are in the linear span of the
preceeding x1, ..., xk−1 to obtain an algebraic basis.

To prove the reverse direction, let (xn)n∈N be an algebraic base for x and consider the seminorms
(pxn)n∈N. We show that these seminorms generate the weak∗-topology. By a) it suffices to show
that for every x ∈ X there exist x1, . . . , xk and a constant c > 0 such that px ≤ cmax1≤i≤k pxi

.

To this end write x =
∑k

i=1 λixi with λi ∈ R and k ∈ N. Then

px(x
′) = |x′(x)| ≤

k∑
i=1

λi|x′(xi)| ≤

(
k∑

i=1

λi

)
︸ ︷︷ ︸

=:c

max
1≤i≤k

pxi
(x′).



Ex 5.2 (On continuity of differentiation and multiplication in C∞(Ω) and DK)
Let Ω ⊂ Rd be open and K ⊂ Rd be compact. Show that

a) for any α ∈ Nd
0, the mapping Dα : φ 7→ Dαφ is a continuous linear operator in both

C∞(Ω) and DK ;

b) for any f ∈ C∞(Rd), the mapping Mf : φ 7→ fφ is a continuous linear operator in both
C∞(Ω) and DK .

Solution 5.2 :
a) Clearly Dα and Mf are linear operators from C∞(Ω) to itself. Since, supp(Dαφ) ⊂ supp(φ)
and supp(fφ) ⊂ supp(φ), the same is true for DK .

As for the continuity in C∞(Ω), let us fix a family of appropriate compact sets (Kn)n∈N and
let N ∈ N. We have

pN(D
αφ) = max{|DβDαφ(x)| : |β| ≤ N, x ∈ KN}

≤ max{|Dγφ(x)| : |γ| ≤ N + |α|, x ∈ KN+|α|} = pN+|α|(φ).

This shows the continuity of Dα. By the Leibniz rule, we have also

pN(fφ) = max{|Dα(fφ)(x)| : |α| ≤ N, x ∈ KN}

≤ max
{∑

β≤α

|cα,βDβf(x)Dα−βφ(x)| : |α| ≤ N, x ∈ KN}

≤ CN pN(f |Ω) pN(φ)

for a suitably large constant CN . This shows the continuity of Mf .

The corresponding result for DK is immediate once we substitute KN with K in the preceding
estimates. Alternatively we can use the following general result from topology : Let (X, τ) be a
topological space, Y ⊂ X and f : X → X. If f is continuous with respect to τ and f(Y ) ⊂ Y ,
then f |Y : Y → Y is continuous with respect to the relative topology τY .

Ex 5.3 (An incomplete locally convex topology on test functions∗)
Let Ω ⊂ Rd be open and consider the set of test functions D(Ω) equipped with the family of
norms

∥φ∥n = max{|Dαφ(x)| : |α| ≤ n, x ∈ Ω}, n ∈ N. (⋆)

a) Assume that Ω = R. Pick φ ∈ D(Ω) with supp(φ) = [0, 1] and φ > 0 on (0, 1). Define

ψm(x) =
m∑
i=1

1

i
φ(x− i).

Show that (ψm)m is a Cauchy sequence in D(R), but the pointwise limit ψ∞ = limψm

does not have compact support, hence it is not in D(R).
b) Show that for any open set Ω ⊂ Rd, the space D(Ω) with the suggested topology is not

complete.

Hint: For Ω ̸= Rd, consider disjoint balls accumulating at the boundary and construct a sequence

of functions appropriately modifying the example in item a).

Ex 5.4 (Heine–Borel and normability)
Recall that a TVS X has the Heine-Borel property if every bounded and closed subset of X is
compact.



a) Prove that every normed vector space (X, ∥·∥) that has the Heine–Borel property is finite
dimensional.
Hint: Recall Exercise 4.4.

b) Deduce that ifK ⊂ Rd is compact with non-empty interior, the space DK is not normable.

Solution 5.4 :
a) Let X be an infinite dimensional normed vector space. Since any normed space is Hausdorff,
we can use Exercise 4.4 to see that no neighborhood of the origin in X is compact. Then
B1(0) := {x ∈ X : ∥x∥ ≤ 1} is clearly closed and bounded, but as it is also a neighborhood of
the origin it cannot be compact. Thus X does not have the Heine–Borel property.

b) Since DK is infinite-dimensional (check that), to deduce that it is not normable it suffices
to show that it has the Heine–Borel property. C∞(Ω) has the Heine–Borel property by Pro-
position 2.5 ; since DK is a closed subset of C∞(Ω), it also inherits this property (for a direct
proof, see Exercise 3.4 c)).


